【导读】人工智能作为新一轮产业变革的核心驱动力,将催生新的技术、产品、产业、业态、模式,从而引发经济结构的重大变革,实现社会生产力的整体提升。麦肯锡预计,到 2025 年全球人工智能应用市场规模总值将达到 1270 亿美元,人工智能将是众多智能产业发展的突破点。
通过对人工智能产业分布进行梳理,提出了人工智能产业生态图,主要分为核心业态、关联业态、衍生业态三个层次。
下面将重点对核心业态包含的智能基础设施建设、智能信息及数据、智能技术服务、智能产品四个方面展开介绍,并总结人工智能行业应用及产业发展趋势。
核心业务1:智能基础设施
智能基础设施为人工智能产业提供计算能力支撑,其范围包括智能传感器、智能芯片、分布式计算框架等,是人工智能产业发展的重要保障。
1、智能芯片
智能芯片从应用角度可以分为训练和推理两种类型。从部署场景来看,可以分为云端和设备端两步大类。训练过程由于涉及海量的训练数据和复杂的深度神经网络结构,需要庞大的计算规模,主要使用智能芯片集群来完成。与训练的计算量相比,推理的计算量较少,但仍然涉及大量的矩阵运算。目前,训练和推理通常都在云端实现,只有对实时性要求很高的设备会交由设备端进行处理。
按技术架构来看,智能芯片可以分为通用类芯片(CPU、GPU、FPGA)、基于 FPGA 的半定制化芯片、全定制化 ASIC 芯片、类脑计算芯片(IBM TrueNorth)。另外,主要的人工智能处理器还有 DPU、BPU、NPU、EPU 等适用于不同场景和功能的人工智能芯片。
随着互联网用户量和数据规模的急剧膨胀,人工智能发展对计算性能的要求迫切增长,对CPU计算性能提升的需求超过了摩尔定律的增长速度。同时,受限于技术原因,传统处理器性能也无法按照摩尔定律继续增长,发展下一代智能芯片势在必行。
未来的智能芯片主要是在两个方向发展:一是模仿人类大脑结构的芯片,二是量子芯片。智能芯片是人工智能时代的战略制高点,预计到 2020 年人工智能芯片全球市场规模将突破百亿美元。
2、智能传感器
智能传感器是具有信息处理功能的传感器。智能传感器带有微处理机,具备采集、处理、交换信息等功能,是传感器集成化与微处理机相结合的产物。智能传感器属于人工智能的神经末梢,用于全面感知外界环境。各类传感器的大规模部署和应用为实现人工智能创造了不可或缺的条件。不同应用场景,如智能安防、智能家居、智能医疗等对传感器应用提出了不同的要求。
未来,随着人工智能应用领域的不断拓展,市场对传感器的需求将不断增多,2020 年市场规模有望突破 4600 亿美元。高敏度、高精度、高可靠性、微型化、集成化将成为智能传感器发展的重要趋势。
3、分布式计算框架
面对海量的数据处理、复杂的知识推理,常规的单机计算模式已经不能支撑。所以,计算模式必须将巨大的计算任务分成小的单机可以承受的计算任务,即云计算、边缘计算、大数据技术提供了基础的计算框架。
目前流行的分布式计算框架如 OpenStack、Hadoop、Storm、Spark、Samza、Bigflow 等。各种开源深度学习框架也层出不穷,其中包括 TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、Theano、DeepLearning4、Lasagne、Neon 等等。
核心业务2:智能信息及数据
信息数据是人工智能创造价值的关键要素之一。我国庞大的人口和产业基数带来了数据方面的天生优势。随着算法、算力技术水平的提升,围绕数据的采集、分析、处理产生了众多的企业。目前,在人工智能数据采集、分析、处理方面的 企业主要有两种:
一种是数据集提供商,以提供数据为自身主要业务,为需求方提供机器学习等技术所需要的不同领域的数据集;
另一种是数据采集、分析、处理综合性厂商,自身拥有获取数据的途径,并对采集到的数据进行分析处理,最终将处理后的结果提供给需求方进行使用。对于一些大型企业,企业本身也是数据分析处理结果的需求方。
核心业务3:智能技术服务
智能技术服务主要关注如何构建人工智能的技术平台,并对外提供人工智能相关的服务。此类厂商在人工智能产业链中处于关键位置,依托基础设施和大量的数据,为各类人工智能的应用提供关键性的技术平台、解决方案和服务。目前,从提供服务的类型来看,提供技术服务厂商包括以下几类:
(1)提供人工智能的技术平台和算法模型。
此类厂商主要针对用户或者行业需求,提供人工智能技术平台以及算法模型。用户可以在人工智能平台上,通过一系列的算法模型来进行人工智能的应用开发。此类厂商主要关注人工智能的通用计算框架、算法模型、通用技术等关键领域。
(2)提供人工智能的整体解决方案。
此类厂商主要针对用户或者行业需求,设计和提供包括软、硬件一体的行业人工智能解决方案,整体方案中集成多种人工智能算法模型以及软、硬件环境,帮助用户或行业解决特定的问题。此类厂商重点关注人工智能在特定领域或者特定行业的应用。
(3)提供人工智能在线服务。
此类厂商一般为传统的云服务提供厂商,主要依托其已有的云计算和大数据应用的用户资源,聚集用户的需求和行业属性,为客户提供多类型的人工智能服务;从各类模型算法和计算框架的 API 等特定应用平台到特定行业的整体解决方案等,进一步吸引大量的用户使用,从而进一步完善其提供的人工智能服务。此类厂商主要提供相对通用的人工智能服务,同时也会关注一些重点行业和领域。
需要指出的是,上述三类角色并不是严格区分开的,很多情况下会出现重叠,随着技术的发展成熟,在人工智能产业链中已有大量的厂商同时具备上述两类或者三类角色的特征。
核心业务4:智能产品
智能产品是指将人工智能领域的技术成果集成化、产品化,具体的分类如下表所示:
随着制造强国、网络强国、数字中国建设进程的加快,在制造、家居、金融、教育、交通、安防、医疗、物流等领域对人工智能技术和产品的需求将进一步释放,相关智能产品的种类和形态也将越来越丰富。
人工智能行业应用
人工智能与行业领域的深度融合将改变甚至重新塑造传统行业,本节重点介绍人工智能在制造、家居、金融、交通、安防、医疗、物流行业的应用,由于篇幅有限,其它很多重要的行业应用在这里不展开论述。
1、智能制造
智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式。智能制造对人工智能的需求主要表现在以下三个方面:
一是智能装备,包括自动识别设备、人机交互系统、工业机器人以及数控机床等具体设备,涉及到跨媒体分析推理、自然语言处理、虚拟现实智能建模及自主无人系统等关键技术。
二是智能工厂,包括智能设计、智能生产、智能管理以及集成优化等具体内容,涉及到跨媒体分析推理、大数据智能、机器学习等关键技术。
三是智能服务,包括大规模个性化定制、远程运维以及预测性维护等具体服务模式,涉及到跨媒体分析推理、自然语言处理、大数据智能、高级机器学习等关键技术。例如,现有涉及智能装备故障问题的纸质化文件,可通过自然语言处理,形成数字化资料,再通过非结构化数据向结构化数据的转换,形成深度学习所需的训练数据,从而构建设备故障分析的神经网络,为下一步故障诊断、优化参数设置提供决策依据。
2、智能家居
参照工业和信息化部印发的《智慧家庭综合标准化体系建设指南》,智能家居是智慧家庭八大应用场景之一。受产业环境、价格、消费者认可度等因素影响,我国智能家居行业经历了漫长的探索期。至 2010 年,随着物联网技术的发展以及智慧城市概念的出现,智能家居概念逐步有了清晰的定义并随之涌现出各类产品,软件系统也经历了若干轮升级。
智能家居以住宅为平台,基于物联网技术,由硬件(智能家电、智能硬件、安防控制设备、家具等)、软件系统、云计算平台构成的家居生态圈,实现人远程控制设备、设备间互联互通、设备自我学习等功能,并通过收集、分析用户行为数据为用户提供个性化生活服务,使家居生活安全、节能、便捷等。
例如,借助智能语音技术,用户应用自然语言实现对家居系统各设备的操控,如开关窗帘 (窗户)、操控家用电器和照明系统、打扫卫生等操作;借助机器学习技术,智能电视可以从用户看电视的历史数据中分析其兴趣和爱好,并将相关的节目推荐给用户。通过应用声纹识别、脸部识别、指纹识别等技术进行开锁等;通过大数据技术可以使智能家电实现对自身状态及环境的自我感知,具有故障诊断能力。通过收集产品运行数据,发现产品异常,主动提供服务,降低故障率。还可以通过大数据分析、远程监控和诊断,快速发现问题、解决问题及提高效率。
3、智能金融
人工智能的飞速发展将对身处服务价值链高端的金融业带来深刻影响,人工智能逐步成为决定金融业沟通客户、发现客户金融需求的重要因素。人工智能技术在金融业中可以用于服务客户,支持授信、各类金融交易和金融分析中的决策,并用于风险防控和监督,将大幅改变金融现有格局,金融服务将会更加地个性化与智能化。
智能金融对于金融机构的业务部门来说,可以帮助获客,精准服务客户,提高效率;对于金融机构的风控部门来说,可以提高风险控制,增加安全性;对于用户来说,可以实现资产优化配置,体验到金融机构更加完美地服务。
人工智能在金融领域的应用主要包括:智能获客,依托大数据,对金融用户进行画像,通过需求响应模型,极大地提升获客效率;身份识别。
身份识别,以人工智能为内核,通过人脸识别、声纹识别、指静脉识别等生物识别手段,再加上各类票据、身份证、银行卡等证件票据的 OCR 识别等技术手段,对用户身份进行验证,大幅降低核验成本,有助于提高安全性;
大数据风控,通过大数据、算力、算法的结合,搭建反欺诈、信用风险等模型,多维度控制金融机构的信用风险和操作风险,同时避免资产损失。
智能投顾,基于大数据和算法能力,对用户与资产信息进行标签化,精准匹配用户与资产;
智能客服,基于自然语言处理能力和语音识别能力,拓展客服领域的深度和广度,大幅降低服务成本,提升服务体验;
金融云,依托云计算能力的金融科技,为金融机构提供更安全高效的全套金融解决方案。
4、智能交通
智能交通系统(Intelligent Traffic System,ITS)是通信、信息和控制技术在交通系统中集成应用的产物。ITS 借助现代科技手段和设备,将各核心交通元素联通,实现信息互通与共享以及各交通元素的彼此协调、优化配置和高效使用,形成人、车和交通的一个高效协同环境,建立安全、高效、便捷和低碳的交通。
例如通过交通信息采集系统采集道路中的车辆流量、行车速度等信息,信息分析处理系统处理后形成实时路况,决策系统据此调整道路红绿灯时长,调整可变车道或潮汐车道的通行方向等,通过信息发布系统将路况推送到导航软件和广播中,让人们合理规划行驶路线。通过不停车收费系统(ETC),实现对通过 ETC 入口站的车辆身份及信息自动采集、处理、收费和放行,有效提高通行能力、简化收 费管理、降低环境污染。
ITS 应用最广泛的地区是日本,其次是美国、欧洲等地区。中国的智能交通系统近几年也发展迅速,在北京、上海、广州、杭州等大城市已经建设了先进的智能交。
推荐阅读: