【导读】全球知名半导体制造商ROHM(总部位于日本京都市)开发出一款设备端学习*AI芯片(配备设备端学习AI加速器的SoC),该产品利用 AI(人工智能)技术,能以超低功耗实时预测内置电机和传感器等的电子设备的故障(故障迹象检测),非常适用于IoT领域的边缘计算设备和端点*1。
ROHM开发出数十毫瓦超低功耗的设备端学习 AI芯片,无需云服务器、在设备端即可实时预测故障
*设备端(On-device)学习: 在同一AI芯片上进行学习和训练
全球知名半导体制造商ROHM(总部位于日本京都市)开发出一款设备端学习*AI芯片(配备设备端学习AI加速器的SoC),该产品利用 AI(人工智能)技术,能以超低功耗实时预测内置电机和传感器等的电子设备的故障(故障迹象检测),非常适用于IoT领域的边缘计算设备和端点*1。
通常,AI芯片要实现其功能,需要进行设置判断标准的“训练”,以及通过学到的信息来判断如何处理的“推理”。在这种情况下,“训练”需要汇集庞大的数据量形成数据库并随时更新,因此进行训练的AI芯片需要具备很高的运算能力,而其功耗也会随之增加。正因如此,面向云计算设备开发的高性能、昂贵的AI芯片层出不穷,而适用于边缘计算设备和端点(更有效地构建物联网社会的关键)的低功耗、可在设备端学习的AI芯片开发却困难重重。
此次开发出的AI芯片,是ROHM在基于日本庆应义塾大学松谷教授开发的“设备端学习算法”,面向商业化开发的AI加速器*2(AI专用硬件计算电路)和ROHM8位高效CPU“tinyMicon MatisseCORE™(以下简称“Matisse”)”构成。通过将2万门超小型AI加速器与高效CPU相结合,能以仅几十mW(仅为以往AI训练芯片的1/1000)的超低功耗实现训练和推理。利用本产品,无需连接云服务器,就可以在设备终端将未知的输入数据和模式形成“不同于以往”的数值并输出,因此可在众多应用中实现实时故障预测。
未来,ROHM计划将该AI芯片的AI加速器应用在IC产品中,以实现电机和传感器的故障预测。计划于2023年度推出产品,于2024年度投入量产。
日本庆应义塾大学 理工学部信息工学科 松谷 宏纪 教授表示:“随着5G通信和数字孪生*3等物联网技术的发展,对云计算的要求也越来越高,而在云服务器上处理所有数据,从负载、成本和功耗方面看并不现实。我们研究的‘设备端学习’和开发的‘设备端学习算法’,是为了提高边缘端的数据处理效率,创建更好的物联网社会。这次,我校通过与ROHM公司进行联合研究,进一步改进了设备端学习电路技术,并有望以高性价比的方式推出产品。我们预计在不久的将来,这种原型AI芯片将会成功嵌入ROHM的IC产品中,为实现更高效的物联网社会做出贡献。”
<关于tinyMicon MatisseCORE™>
tinyMicon MatisseCORE™(Matisse: Micro arithmetic unit for tiny size sequencer)是ROHM自主开发的8位微处理器(CPU),该产品旨在随着物联网技术的发展来提高模拟IC的智能化程度。凭借针对嵌入式应用而优化的指令集和最新的编译器技术,以高标准实现了更小的芯片面积和程序代码、以及更高速的运算处理能力。此外,该产品还符合汽车功能安全标准“ISO 26262”、ASIL-D等的要求,适用于对可靠性要求高的应用。另外,利用内置的自有“实时调试功能”,在调试时的处理可以完全不影响应用程序的运行,因此能在应用产品工作的同时进行调试。
<AI芯片(配备设备端学习AI加速器的SoC)详细介绍>
这次开发出的设备端学习AI芯片原型(产品型号:BD15035)在人工智能技术的基础上,采用了庆应义塾大学松谷教授开发的“设备端学习算法(三层神经网络*4的AI电路)”。为了推出可以投放市场的产品,ROHM将这种AI电路的大小从500万门缩小为2万门,仅为原来的0.4%,并将其重新构建为自有的AI加速器“AxlCORE-ODL”,同时,利用ROHM的8位高效微处理器“tinyMicon MatisseCORE™”进行AI加速器的运算控制,使得仅数十毫瓦的超低功耗AI训练和推理成为可能。利用本产品,无需连接云服务器和事先进行AI训练,就可以设备终端将未知的输入数据和模式(例如加速度、电流、照度、声音等)形成“不同于以往(异常度)”的数值并输出,因此不仅可以降低云服务器和通信成本,还能通过终端AI进行实时故障预测(故障迹象检测)。
另外,ROHM还提供可安装微控制器开发板“Arduino*5”用扩展板(配备Arduino兼容引脚)的评估板,以方便客户评估这款AI芯片。评估板上装有无线通信模块(Wi-Fi和Bluetooth®)以及64kbit EEPROM(内存),只需将该评估板与传感器等单元相连接,将传感器装在监控对象上,即可在显示屏上确认AI芯片的效果。关于该评估板,如有需要欢迎联系ROHM的销售部门。
<AI芯片的演示视频>
ROHM还准备了该AI芯片在使用评估板时的演示视频,欢迎观看!
https://api01-platform.stream.co.jp/apiservice/plt3/NDc3%23MTY5MQ%3d%3d%23500%232d0%230%233FE6F851E400%23OzEwOzEwOzEw%23
<术语解说>
*1) 边缘计算设备和端点
将构成大数据基础的服务器和计算机连接云端,即成为“云服务器”和“云计算设备”,而构成边缘(端)侧的边缘计算设备则是指终端的计算机或设备。端点是指比边缘计算设备更末端的设备和地点。
*2) AI加速器
在实现AI功能时,将由软件让处理器(CPU)执行处理改为通过硬件处理来提高处理速度的设备(或电子电路)。
*3) 数值孪生
一种将现实世界中的信息像双胞胎一样映射在虚拟空间(数字空间)中的技术。
*4) 三层神经网络
在受人脑机制启发而诞生的神经网络(数学公式和函数的模型)中,由输入层、中间层和输出层组成的处理流程中,将中间层视为一层、总共仅由三层构成的简单神经网络。由几十层中间层来执行更复杂的AI处理的多层神经网络即为“深度学习”。
*5) Arduino
Arduino推出的由载有微控制器和输入输出端口的PCB板及软件开发环境构成的开放源代码平台,已在全球广泛普及。
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。
推荐阅读:
英国Pickering公司推出9kV高压PXI和LXI开关模块
高云半导体发布全新22nm高性能FPGA家族——晨熙5代(Arora V)