你的位置:首页 > 新品 > 正文

清华大学研制出全球首颗支持片上学习忆阻器存算一体芯片

发布时间:2023-10-12 责任编辑:lina

【导读】近日,清华大学集成电路学院教授吴华强、副教授高滨团队基于存算一体计算范式,研制出全球首颗全系统集成的、支持高效片上学习(机器学习能在硬件端直接完成)的忆阻器存算一体芯片,在支持片上学习的忆阻器存算一体芯片领域取得重大突破,有望促进人工智能、自动驾驶可穿戴设备等领域发展。相关成果在线发表于最新一期的《科学》。


近日,清华大学集成电路学院教授吴华强、副教授高滨团队基于存算一体计算范式,研制出全球首颗全系统集成的、支持高效片上学习(机器学习能在硬件端直接完成)的忆阻器存算一体芯片,在支持片上学习的忆阻器存算一体芯片领域取得重大突破,有望促进人工智能、自动驾驶可穿戴设备等领域发展。相关成果在线发表于最新一期的《科学》。


清华大学研制出全球首颗支持片上学习忆阻器存算一体芯片


当前国际上的相关研究主要集中在忆阻器阵列层面的学习功能演示,然而实现全系统集成的、支持高效片上学习的忆阻器芯片仍面临较大挑战,至今尚未实现,主要在于传统的反向传播训练算法所要求的高精度权重更新方式与忆阻器实际特性的适配性较差。

据了解,面向传统存算分离架构制约算力提升的重大挑战,吴华强、高滨创造性提出适配忆阻器存算一体,实现高效片上学习的新型通用算法和架构(STELLAR),有效实现大规模模拟型忆阻器阵列与CMOS的单片三维集成,通过算法、架构、集成方式的全流程协同创新,研制出全球首颗全系统集成的、支持高效片上学习的忆阻器存算一体芯片。


该芯片包含支持完整片上学习所必需的全部电路模块,成功完成图像分类、语音识别和控制任务等多种片上增量学习功能验证,展示出高适应性、高能效、高通用性、高准确率等特点,有效强化智能设备在实际应用场景下的学习适应能力。相同任务下,该芯片实现片上学习的能耗仅为先进工艺下专用集成电路(ASIC)系统的3%,展现出卓越的能效优势,极具满足人工智能时代高算力需求的应用潜力,为突破冯·诺依曼传统计算架构下的能效瓶颈提供了一种创新发展路径。


文章来源:中国科技网


免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。


推荐阅读:

SynQor发布先进的军用级紧凑型4 KW,270 Vdc输入逆变器(MINV-4000-1U-270)

e络盟开售DFRobot高性能UNIHIKER行空板

Nexperia与KYOCERA AVX Salzburg合作为功率应用生产650 V碳化硅整流二极管模块

大联大世平集团推出基于NXP产品的UWB 3D定位算法与上位机方案

英飞凌推出面向高能效电源应用的第七代分立式650V TRENCHSTOP IGBTs H7新品

特别推荐
技术文章更多>>
技术白皮书下载更多>>
热门搜索
 

关闭

 

关闭